Computational investigations of maximum flow algorithms

ثبت نشده
چکیده

The maximum flow algorithm is distinguished by the long line of successive contributions researchers have made in obtaining algorithms with incrementally better worst-case complexity. Some, but not all, of these theoretical improvements have produced improvements in practice. The purpose of this paper is to test some of the major algorithmic ideas developed in the recent years and to assess their utility on the empirical front. However, our study differs from previous studies in several ways. Whereas previous studies focus primarily on CPU time analysis, our analysis goes further and provides detailed insight into algorithmic behavior. It not only observes how algorithms behave but also tries to explain why algorithms behave that way. We have limited our study to the best previous maximum flow algorithms and some of the recent algorithms that are likely to be efficient in practice. Our study encompasses ten maximum flow algorithms and five classes of networks. The augmenting path algorithms tested by us include Dinic's algorithm, the shortest augmenting path algorithm, and the capacity-scaling algorithm. The preflow-push algorithms tested by us include Karzanov's algorithm, three implementations of Goldberg-Tarjan's algorithm, and three versions of Ahuja-Orlin-Tarjan's excess-scaling algorithms. Among many findings, our study concludes that the preflow-push algorithms are substantially faster than other classes of algorithms, and the highest-label preflow-push algorithm is the fastest maximum flow algorithm for which the growth rate in the computational time is O(n LS) on four out of five of our problem classes. Further, in contrast to the results of the worst-case analysis of maximum flow algorithms, our study finds that the time to perform relabel operations (or constructing the layered networks) takes at least as much computation time as that taken by augmentations and/or pushes. © 1997 Published by Elsevier Science B.V. 1. I n t r o d u c t i o n The maximum flow problem is one of the most fundamental problems in network optimization. Its intuitive appeal, mathematical simplicity, and wide applicabil i ty has made it a popular research topic * Corresponding author. 0377-2217/97/$17.00 © 1997 Published by Elsevier Science B.V. All PII S0377-2217(96)00269-X among mathematicians, operations researchers and computer scientists. The maximum flow problem arises in a wide variety of situations. It occurs directly in problems as diverse as the flow of commodit ies in pipeline networks, parallel machine scheduling, distributed computing on multi-processor computers, matrix rounding problems, the baseball el imination problem, and the statistical security of data. The maximum flow

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analytical and comparative investigations on counter flow heat exchanger using computational fluid dynamics

This paper presents a comprehensive and exclusive thermodynamic analysis of counter flow heat exchanger under various operating and geometrical conditions. Analysis system (ANSYS) workbench 14.0 has been used for computational analysis and comparison with previous literature has been carried out in view of variable temperature and mass flow rate of hot and cold fluids. An analytical and statist...

متن کامل

Scheduling of a flexible flow shop with multiprocessor task by a hybrid approach based on genetic and imperialist competitive algorithms

This paper presents a new mathematical model for a hybrid flow shop scheduling problem with multiprocessor tasks in which sequence dependent set up times and preemption are considered. The objective is to minimize the weighted sum of makespan and maximum tardiness. Three meta-heuristic methods based on genetic algorithm (GA), imperialist competitive algorithm (ICA) and a hybrid approach of GA a...

متن کامل

Computational Investigations of Maximum Flow Algorithms

The maximum flow algorithm is distinguished by the long line of successive contributions researchers have made in obtaining algorithms with incrementally better worst-case complexity. Some, but not all, of these theoretical improvements have produced improvements in practice. The purpose of this paper is to test some of the major algorithmic ideas developed in the recent years and to assess the...

متن کامل

Improved teaching–learning-based and JAYA optimization algorithms for solving flexible flow shop scheduling problems

Flexible flow shop (or a hybrid flow shop) scheduling problem is an extension of classical flow shop scheduling problem. In a simple flow shop configuration, a job having ‘g’ operations is performed on ‘g’ operation centres (stages) with each stage having only one machine. If any stage contains more than one machine for providing alternate processing facility, then the problem...

متن کامل

COVERT Based Algorithms for Solving the Generalized Tardiness Flow Shop Problems

Four heuristic algorithms are developed for solving the generalized version of tardiness flow shop problems. We consider the generalized tardiness flow shop model with minimization of the total tardiness as its performance measure. We modify the concept of cost over time (COVERT) for the generalized version of the flow shop tardiness model and employ this concept for developing four algorithms....

متن کامل

Favorable Plug Shape of an Aerospike Nozzle in Design, Over and Under Expansion Conditions

The influence of the plug shape on the performance of an aerospike nozzle thrust force is studied in different back pressure conditions. To generate smooth plug contours, Cubic B-Spline technique is employed. In the current research, basis functions are obtained using Deboor’s relation. The flow field around the aerospike nozzle is investigated implementing various shapes and the best of the ge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003